Exp Math Homework

Although I agree with the answers already provided that in this situation (and indeed in most other ones in mathematics) there is no difference between the two notations, I would like to add the following for completeness:

In manifold theory (most particularly Lie Group theory or Riemannian geometry), the exponential map $\exp$ is a map from a tangent space to the manifold itself. For Lie groups, it expresses the local group structure and allows to lift many problems from the group to the tangent space (the Lie algebra). It also defines integral curves on the manifold and is therefore related to geodesics (which is more obvious from the viewpoint of Riemannian geometry).

This exponential $\exp$ coincides with the usual exponential for the case of the Lie group $\mathbb{R}$. It also coincides with the definition of the matrix exponential $$ e^A = \sum_{n=0}^\infty\frac{A^n}{n!}. $$ However, I believe this cannot be done in general, although I do not have an example available.

Сам он трижды пытался связаться со Сьюзан - сначала с мобильника в самолете, но тот почему-то не работал, затем из автомата в аэропорту и еще раз - из морга. Сьюзан не было дома. Он не мог понять, куда она подевалась.

Всякий раз включался автоответчик, но Дэвид молчал. Он не хотел доверять машине предназначавшиеся ей слова.

0 Replies to “Exp Math Homework”

Lascia un Commento

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *